Supersymmetric Gauge Theories in 3d

Nathan Seiberg IAS

The Search for Fundamental Physics: Higgs Bosons & Supersymmetry

Volume 125B, number 6

PHYSICS LETTERS

16 June 1983

THE MASSLESS LIMIT OF SUPERSYMMETRIC QCD

Anne Christine DAVIS¹, Michael DINE and Nathan SEIBERG The Institute for Advanced Study, Princeton, NJ 08540, USA

Received 12 April 1983

We construct an effective lagrangian for supersymmetric QCD, using a simple set of rules. The model with non-zero quark mass, m_q , has at least N supersymmetric vacua, where N is the number of colors (in agreement with Witten's index). These vacua move to infinity as $m_q \rightarrow 0$. We study the possibility of supersymmetric breaking at $m_q = 0$.

VOLUME 51, NUMBER 12

PHYSICAL REVIEW LETTERS

19 September 1983

Supersymmetry Breaking by Instantons

Ian Affleck

Joseph Henry Laboratories, Princeton University, Princeton, New Jersey 08544

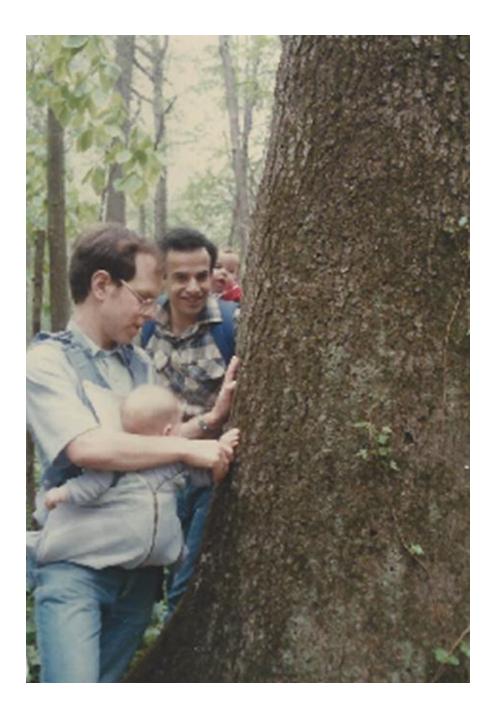
and

0 1

Michael Dine and Nathan Seiberg The Institute for Advanced Study, Princeton, New Jersey 08540

(Received 25 July 1983)

It is shown that instantons generate a superpotential in supersymmetric QCD with N colors and N-1 flavors.



SUSY gauge theories

- In our 1983-1985 papers (following many other authors including in particular Witten) we started analyzing the dynamics of SUSY gauge theories.
- The goal at the time was to learn about dynamical SUSY breaking.
- During the past 30 years there has been a lot of progress understanding these theories, leading to new insights about quantum field theory and string theory.
- Many of the tools and the concepts are due to Michael Dine.

Supersymmetric Gauge Theories in 3d

Nathan Seiberg

Based on work with Aharony, Intriligator, Razamat, and Willett, to appear

3d SUSY Gauge Theories

- New lessons about dynamics of quantum field theory
- Since they can be obtained by studying a 4d theory on a circle, they reflect properties of 4d theories.
- Applications to condensed matter physics?
- New elements, which are not present in 4d...

New elements in 3d N=2 SUSY

- No asymptotic freedom bound on the number of matter fields.
- U(1) theories can exhibit interesting dynamics, hence we can examine the effect of Fayet-Iliopoulos terms.
- New SUSY coupling constants: Chern-Simons terms, real masses.
- New phases (topological)
- BPS (half-SUSY) particles; e.g. Skyrmions, vortices
- Vortex/monopole operators (analogs of twist fields in 2d and 'tHooft lines in 4d). They cannot be written in a simple local fashion.

The Coulomb branch

- A 3d N=2 gauge multiplet includes a scalar σ. When the theory is obtained by compactifying a theory on a circle it originates from A₄ (a Wilson line around the circle).
- The photon is dual to a compact scalar *a*.
- $X = e^{\sigma/g_3^2 + ia}$ (+ quantum corrections) is a chiral superfield. Its vev parameterizes a Coulomb branch.

Monopole (vortex) operators

Microscopically X is defined as a monopole operator [Kapustin et al].

• A monopole operator leads to a singularity in F $dF = 2\pi \delta^{(3)}(x)$

(equivalently, remove a ball around *x* = *0* and put one unit of flux through its surface).

• In SUSY **F** is in a linear superfield $\Sigma = D\bar{D}V$ and the monopole operator is defined through $\bar{D}^2\Sigma = 2\pi\delta^{(3)}(x)\theta^2$; $D^2\Sigma = 0$

 $\sigma \sim \frac{1}{|x|}$

Hence

Monopole (vortex) operators

• It is easy to see that in the dual variables

 $\bar{D}^2 \Sigma = 2\pi \delta^{(3)}(x) \theta^2$

has the same effect in the functional integral as the insertion of (2)

$$X = e^{\sigma/g_3^2 + ia}$$

 $\sigma \sim rac{1}{|x|}$

• Semiclassically, this insertion sets

and thus pushes the scalar σ to infinity.

• This explains why the chiral operator X is associated with the Coulomb branch.

Duality in 4d N=1 SUSY Gauge Theory

Two dual theories are related by RG flow

- Two asymptotically free theories flow to the same IR fixed point
- An asymptotically free theory in the UV flows to an IR free field theory.

Characteristic example

- Electric theory: $SU(N_c)$ with N_f quarks Q, \tilde{Q}
- Magnetic theory: $SU(N_f N_c)$ with N_f quarks q, \tilde{q} and singlets M (mesons) with a superpotential

$$W = Mq\tilde{q}$$

Lessons

- Nontrivial mixing of flavor and gauge
 - The dual gauge group depends on the flavor
- Composite gauge fields
 - Gauge symmetry can be emergent
 - Gauge symmetry is not fundamental

Going to 3d

- Reducing the two dual Lagrangians to 3d does not lead to dual theories.
 - Perhaps it is not surprising radius going to zero does not commute with IR limit in 4d
- Aharony, Giveon and Kutasov conjectured some dual pairs.
 - They were motivated by stringy brane constructions.
 - These were recently generalized and tested by various authors.

Aharony duality

- The electric theory : $U(N_c)$ with N_f quarks Q, \tilde{Q}
- The magnetic theory: $U(N_f N_c)$ with N_f quarks, q, \tilde{q} and singlets M (mesons) and X^{\pm} (monopoles) with a superpotential

$$W = Mq\tilde{q} + X^+\tilde{X}^- + X^-\tilde{X}^+$$

 \tilde{X}^{\pm} are monopoles of the magnetic gauge group.

Aharony duality

- The Lagrangian of the magnetic theory includes monopole operators \tilde{X}^{\pm} . These are local operators, but they cannot be expressed simply in terms of the elementary fields.
- The monopoles of the electric theory are elementary in the magnetic theory.
- The monopoles carry nontrivial flavor quantum numbers. Hence, mixing of gauge and flavor.
- Similar dualities with orthogonal and symplectic gauge groups

Giveon-Kutasov duality

- The electric theory: $U(N_c)_k$ (the subscript denotes the coefficient of the Chern-Simons term) with N_f quarks Q, \tilde{Q}
- The magnetic theory: $U(|k|+N_f N_c)_{-k}$ with N_f quarks q, \tilde{q} and singlets M (mesons) with a superpotential

 $W = Mq\tilde{q}$

Giveon-Kutasov duality

- No monopole operators in the Lagrangians
- Relation to level-rank duality
- This duality can be derived from Aharony duality (and vice versa) by turning on real mass terms and using renormalization group flow.
- Similar dualities with orthogonal and symplectic gauge groups

Duality in 3d

- Until recently, only a few tests main motivation was brane constructions.
- New non-trivial tests involving the S³ and the S²xS¹ partition functions [Kapustin, Willett and Yaakov, ...]

Questions:

- Why doesn't the simple reduction from 4d work?
- Why are these *3d* dualities so similar to the *4d* dualities?
- Are there additional dual pairs?
- What is the underlying reason for duality?

Compactify a 4d theory on a circle

- Main difference between a 4d theory and its 3d counter-part is an anomalous U(1) symmetry is 4d.
 Instantons explicitly break the symmetry.
- When the 4d theory is placed on a circle 4d instantons still break the U(1) symmetry. They typically lead to a term in the effective superpotential [NS, Witten]

 $W = \eta X$

-X is a monopole operator.

- $-\eta \sim e^{-8\pi^2/g^2}$ is the 4d instanton factor.
- η goes to zero in the *3d* limit.

Compactify a 4d dual pair

In order to break the anomalous symmetries in the 3d theories we should add to the 3d Lagrangian of the electric theory ηX and to the 3d Lagrangian of the magnetic theory $\tilde{\eta}\tilde{X}$.

- This leads to two dual theories in *3d*.
- All the tests of duality in *3d* are satisfied.
- One might not like the presence of the monopole operators in the Lagrangians.

Example

• Electric theory: $SU(N_c)$ with N_f quarks Q, \tilde{Q} with a superpotential

$$W = \eta X$$

• Magnetic theory: $SU(N_f - N_c)$ with N_f quarks q, \tilde{q} and singlets M (mesons) with a superpotential

$$W = Mq\tilde{q} + \tilde{\eta}\tilde{X}$$
$$\eta\tilde{\eta} \sim 1$$

Deforming the dual pair by relevant operators

- We can deform the dual pair with all the relevant operators present in *4d*.
 - This preserves the duality
 - Given our construction, this fact is trivial and does not lead to new dualities.
- New relevant operators real masses for the quarks.
 They lead to new interesting dual pairs.

Example 1: Real mass for one of the flavors – the electric theory

- Start with N_f + 1 flavors and turn on real mass for one of the flavors (opposite signs for the quarks and antiquarks).
- The low energy electric theory is SU(N_c) with N_f quarks. There is no monopole operator in the Lagrangian (no η-term); W=0.
- This is standard SQCD.

Example 1: Real mass for one of the flavors – the magnetic theory

• The magnetic gauge group is Higgsed:

 $SU(N_f + 1 - N_c) \rightarrow U(N_f - N_c)$

• The light elementary matter fields are:

 $-N_f$ dual quarks, q, \tilde{q}

- SU(N_f N_c) singlets with U(1) charges $\pm (N_f N_c)$, b, \tilde{b}
- Neutral fields M (mesons) and X (monopole)

$$W = Mq\tilde{q} + Xb\tilde{b} + \tilde{X}^+ + \tilde{X}^-$$

 \tilde{X}^{\pm} are monopole operators of $U(N_f - N_c)$.

Example 2: Real masses for all the antiquarks

- The electric theory: SU(N_c) with N_f fundamentals Q.
 No additional fields, W=0.
- Depending on the signs of the masses there might or might not be a Chern-Simons term.
- For even N_f we can let $N_f/2$ of the anti-quarks have positive real mass and $N_f/2$ of them have negative real mass. Then there is no Chern-Simons term.
- The magnetic theory: SU(N_f N_c) with N_f fundamentals q. No additional fields, W=0.

Conclusions

- Every 4d dual pair leads to a 3d dual pair (with monopole operators in the Lagrangians).
- Turning on real masses, we find many more dual pairs:
 - We reproduced all known examples
 - Many new dualities (with or without monopole operators in the electric or magnetic Lagrangians)
- This explains:
 - Why naïve dimensional reduction of the dual pair does not work
 - Why the known examples are similar to the 4d examples.

Conclusions

- This two step process (reduce with a monopole operator and flow down) has to work. It follows from the assumption of 4d duality.
- Alternatively, the fact that it works leads to new tests of 4d duality.
- It seems that all *3d* dualities follow from *4d* dualities.
- More generally, 3d dynamics is part of 4d dynamics.
- It raises many new questions...

Michael,

Thank you for teaching me so much physics, for being such a wonderful collaborator (27 papers), and most important, for being such a good friend. Howie and Michael, Happy Birthday!